General Solution of the Schrödinger Equation with Potential Field Quantization and Some Applications
Hiç mesaj bulunmadı
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 220.50 TL | 220.50 TL |
2 Taksit | 110.25 TL | 220.50 TL |
3 Taksit | 77.91 TL | 233.73 TL |
4 Taksit | 58.98 TL | 235.94 TL |
5 Taksit | 47.63 TL | 238.14 TL |
6 Taksit | 40.06 TL | 240.35 TL |
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 220.50 TL | 220.50 TL |
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 220.50 TL | 220.50 TL |
2 Taksit | 114.66 TL | 229.32 TL |
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 220.50 TL | 220.50 TL |
2 Taksit | 110.25 TL | 220.50 TL |
3 Taksit | 76.44 TL | 229.32 TL |
4 Taksit | 57.88 TL | 231.53 TL |
5 Taksit | 46.75 TL | 233.73 TL |
6 Taksit | 39.32 TL | 235.94 TL |
Taksit | Tutar | Toplam |
---|---|---|
Tek Çekim | 220.50 TL | 220.50 TL |
2 Taksit | 114.66 TL | 229.32 TL |
3 Taksit | 77.18 TL | 231.53 TL |
4 Taksit | 58.43 TL | 233.73 TL |
Ödeme Türü | Toplam Tutar |
---|---|
Diğer Kredi Kartları | 220.50 TL |
Havale / Eft | 220.50 TL |
Posta Çeki | 220.50 TL |
Kapıda Ödeme | 235.50 TL |
Kapıda ödemeli siparişlerde +15,00TL kapıda ödeme hizmet bedeli ilave edilir. |
- Vade farksız taksitler KOYU renkte gösterilmektedir.
- X+X şeklinde belritilen taksitler (Örneğin: 2+3) 2 taksit olarak işleme alınmakta ancak ilgili bankanın kampanyası dahilinde 2 taksit üzerinden işlem yapıldığı halde 2+3 yani 5 taksit olarak kartınıza ve ödemenize yansımaktadır. (2 taksit seçilmiş olsa bile banka kampanyası dahilinde ekstradan vade farkı eklenmeden işlem 5 taksite bölünmektedir.)
General Solution of the Schrödinger Equation with Potential Field Quantization and Some Applications
A simple procedure has been found for the general solution of the time-independent Schrödinger Equation (SE) with the help of quantization of potential area in one dimension without making any approximation. Energy values are not dependent on wave functions. So, to find the energy values, it is enough to find the classic turning points of the potential function. Two different solutions were obtained, namely, symmetric, and antisymmetric in bound states. These normalized wave functions are always periodic. It is enough to take the integral of the square root of the potential energy function to find the normalized wave functions. If these calculations cannot be made analytically, they should then be performed by numerical methods. The SE has been solved for a particle in many one-dimension and the spherical symmetric central potential well as examples. The relative Dirac Equation is also solved. Their energies and normalized wave functions were found as examples. These solutions were also applied to the theories of scattering and alpha decay. The results obtained with the experimental values were compared with the calculated values. One was seen to be very fit.